
 
 
 
 
 
 
 

20 Dynamic data and 
pointers 
 
In all the examples considered so far, we have known how many data elements there 
will be, or we have at least decided on some maximum number that we are prepared to 
deal with.  The data may be global, their space can be sorted out at compile-time (or 
link-load time); or the data may be temporary such as variables that belong to a function 
and which exist on the stack only while the code of that function is being executed.  But 
a lot of problems involve data that aren't like that.  You know that you have to deal with 
data objects, but you really don't know how many there will be, and nor do you know 
for how long you will need them. 
 The main example in this chapter is an "Air Traffic Control" game.  The game 
involves the player controlling the movements of aircraft, giving them orders so that 
they line up with a runway, moving at an appropriate speed and rate of descent so that 
they can land safely.  The game simulates the passage of time and introduces new 
aircraft into the controlled air space at a predefined frequency.  The "lifetime" of an 
individual aircraft varies depending on the skill of the player.  Aircraft get created by 
the game component; they get removed on successful landing (or by running out of 
fuel).  If the player is skilful, the correct sequence orders is given to adjust the aircraft's 
speed, height and bearing through a number of stages until it is aligned with the 
runway.  If the player makes a mistake, an aircraft may have to overshoot and circle 
around for a second try (or may run out of fuel).  So the lifetime of aircraft does vary in 
essentially arbitrary ways.  The number of aircraft in existence at a particular moment 
will also vary.  At simple game levels there will be one or two (plus any making second 
attempts after aborted landings); at higher game levels there could be dozens. 
 The game program would represent the aircraft using data structures (either structs 
or instances of some class Aircraft).  But these data structures have to be handled in 
ways that are quite different from any data considered previously. 
 Section 20.1 introduces the "heap" and the operators that can be used to create and 
destroy data objects in the heap.  The "heap" is essentially an area of memory set aside 
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2 Dynamic data and pointers 

for a program to use to create and destroy data structures that have varied lifetimes like 
the example aircraft. 
 The actual allocation of space in the heap for a new data object is handled by a run-
time support routine.  This "memory manager" routine will select some space in the 
heap when asked to create an object of a given size.  The memory manager reports 
where the object has been placed by returning its address.  This address becomes the 
value held in a "pointer variable".  The heap-based object has to be accessed "indirectly 
via the pointer".  Section 20.2 looks at issues like the definition of pointer variables, the 
use of pointers to access data members of an object, and operations on entire structures 
that are accessed through pointers. 
 A simple Air Traffic Control game is used in Section 20.3 as a practical illustration.  
This version doesn't have a particularly attractive user interface; it is just a framework 
with which to illustrate creation, access, and destruction of objects. 
 You can work with pointers to data elements other than those allocated on the heap.  
We have already had cases where the '&' address of operator was used to get a pointer 
value (when passing an address to the read() and write() low level i/o functions).  
Section 20.4 looks at the use of the & operator and a number of related issues.  Many of 
the libraries that you use are still C language libraries and so you must learn something 
of C's styles of pointer usage. 
 Another legacy of C is the rather poorly defined concept of an array.  C 
programming idioms often abandon the concept of an array as a composite structure of 
many elements identifiable and accessible using their index value.  Instead the C hacker 
style uses the assembly language level notions of a block of memory that can be 
accessed via address registers that have been loaded with the addresses of byte 
locations in memory.  In this style, the contents of arrays are accessed using pointers 
and arithmetic operations are performed on pointers to change their values so as to 
identify different array elements.  Because of the large amount of existing C code that 
you will need to work with, you need a "reading knowledge" of some of these pointer 
idioms.  This is the content of Section 20.5.  Note, it should be a "reading knowledge"; 
you should not write code employing these coding idioms. 
 Section 20.6 discusses "networks", showing how complicated structures can be built 
out of separate parts linked together with pointers. 
 
 
20.1 THE "HEAP" 
 
As illustrated in Figure 20.1, the memory allocated to a program is divided into four 
parts or "segments".  The segments are: "code", "static data", "stack", and "heap".  (This 
organization is conceptual only.  The actual realization on a given computer 
architecture may well be considerably more complex.) 
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Figure 20.1 Program "segments" in memory: code, static data, stack, and "heap". 

 
 The "code" segment contains the bit patterns for the instructions.  The contents of 
the code segment are composed largely by the compiler; the linking loader finalises 
some of the addresses needed in instructions like function calls.  The code segment will 
include library routines that have been linked with the code specifically written for the 
program.  On machines with "memory protection" hardware, the code segment will be 
effectively "read only". 
 The "static data segment" is used for those data variables that are global or at least 
filescope.  These are the variables that are defined outside of the body of a function.  (In 
addition, there may be some variables that have been defined within functions, and 
which have function scope, but which have been explicitly allocated to the static data 
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segment.  Such variables are rarely used; there are none in this text book.)  Space for 
variables in the static data segment is allocated by the linking loader.  The variables are 
initialized by a run-time support routine prior to entry to main().  In some cases, 
special "at exit" functions may manipulate these variables after a return from main() 
(i.e. after the program is nominally finished!).  Such variables remain in existence for 
the entire duration of the program (i.e. their lifetime exceeds that of the program). 
 The stack holds stack frames.  The stack frames hold the local variables of a 
function together with the housekeeping details needed to record the function call and 
return sequence.  A stack frame is created as a function is called and is freed on exit.  
Local variables of a function remain in existence during the execution of their own 
function and all functions that it calls. 
 The heap is a completely separate region of memory controlled by a run-time 
"memory manager" support routine.  (This is not the operating system's memory 
manager that sorts out what space should be given to different programs.  This run-time 
memory manager is a library function linked to your code.)  This run-time memory 
manager handles requests for fixed sized blocks of memory. 
 In C it is normal to make requests direct to the memory manager specifying the size 
of blocks in terms of the number of bytes required.  C++ has provided a higher level 
interface through the new operator explained below.  Using new, a function can request 
the creation of a heap-based struct, a class instance, an array of variables of simple 
types (e.g. an array of characters) or even an array of class instances.  The new operator 
works out the number of bytes needed and deals with all the other low level details 
associated with a call to the actual run-time memory manager. 
 When a program starts, the operating system gives it some amount of memory for its 
heap segment.  The amount obviously varies with the system, but typical initial 
allocations would be in the range from a quarter megabyte to eight megabytes.  On 
some systems, a program may start with a small area for its heap but is able to request 
that the OS enlarge the heap later.  One of the start up routines would record details of 
the heap allocation and mark it all as "free". 
 When asked for a block of memory, the memory manager will search the heap 
looking for a "free" area that is large enough provide the space required and hold a little 
additional housekeeping information.  The memory manager needs to keep track of the 
space it allocates.  As illustrated in Figure 20.2, its "housekeeping records" are placed 
as "headers" and "trailers" in the bytes just before and just after the space reserved for a 
new structure.  These housekeeping records note the size of the block and mark it as "in 
use".  When the memory manager function has finished choosing the space to be 
allocated and has filled in its records, it returns the address of the start of the data area. 
 Structures allocated on the heap eventually get discarded by the program (as when, 
in the example, the aircraft land or crash).  Even if your programs starts with an eight 
megabyte heap, you will eventually run out of memory if you simply created, used, and 
then discarded the structures. 
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Figure 20.2 "Blocks" allocated on the heap. 
 
 If you create dynamic structures in the heap, you are expected to give them back to 
the memory manager when you no longer need them.  The memory manager can then 
reclaim the space they occupied.  The memory manager will mark their headers as 
"free".  Subsequently, these blocks may get reallocated or merged with neighboring free 
blocks.  In C++, you pass discarded data structures back to the memory manager using 
the delete operator. 
 It is common for programmers to be a bit careless about giving discarded data 
structures back to the memory manager.  Some dynamically allocated structures just get 
forgotten.  Such structures become "dead space" in the heap.  Although they aren't used 
they still occupy space.  A part of the program's code that creates, uses, but fails to 
delete structures introduces a "memory leak".  If that code gets called many times, the 
available heap space steadily declines ("my memory appears to be leaking away"). 
 If your code has a memory leak, or if you are allocating exceptionally large 
structures you may eventually run out of heap space.  The C++ language has defined 
how the memory manager should handle situations where it is asked to create a new 
structure and it finds that there is insufficient space.  These language features are a bit 
advanced; you will get to them in later studies.  Initially, you can assume that requests 
for heap space will always succeed (if a request does fail, your program will be 
terminated and an error message will be printed). 
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 The headers and trailers added by the memory manager would typically come to 
about 16 bytes, maybe more.  This is a "space overhead" associated with every structure 
allocated in the heap.  A program that tries to allocate individual char or int variables in 
the heap almost certainly has a fundamental design error.  The heap is meant to be used 
for creation of reasonable sized data objects like structs or arrays. 
 The work that the memory manager must perform to handle calls via new and 
delete is non-trivial.  Quite commonly, profiling a program will reveal that a 
measurable percentage of its time is spent in the memory management routines.  You 
should avoid creating and destroying structures inside deeply nested loops.  The heap is 
meant to be used for the creation of data objects that have reasonable lifetimes. 
 The following illustrate use of the new operator to create structures in the heap: 
 

struct Point3d { double fX, fY, fZ, fR, fTheta, fPhi; } 
class Bitmap;  // as declared in Chapter 19 
class Number; // as declared in Chapter 19 
… 
 
…  = new Point3d; 
… 
…  = new Bitmap; 
… 
…  = new Number("77777666555"); 
… 
… = new char[kMAX]; 

 
Each of these uses of the new operator results in the return of the address of the start of 
a newly allocated block of memory in the heap.  These address values must be assigned 
to pointer variables, as explained in the next section. 
 The first example creates a Point3d data structure.  The data block allocated in the 
heap would be just the right size to hold six double precision numbers. 
 The second example does a little more.  The memory manager would allocate block 
of heap space sufficient to hold a bit map object (an instance of class Bitmap from 
chapter 19).  Class Bitmap has a constructor function that initializes a bit map.  The 
code generated for the new operator has a call to this constructor function so as to 
initialize the newly allocated data area. 
 The third example is similar, except that it involves an instance of class Number .  
Class Number has several possible constructors; the one needed here is the one that 
takes a character string.  The code generated for the new operator would include a call 
to that constructor so the newly allocated Number would be correctly initialized to a 
value a little over seventy seven thousand million. 
 The final example creates an array of characters.  (The size of the array is 
determined by the value in the [ ] brackets.  Here the value is a constant, but an 
expression is allowed.  This make it possible to work out at run time the size of the 
array needed for some specific data.)  Technically, this last example is using a different 
operator.  This is the new [] operator (the "make me an array operator"). 

Overheads when 
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 It is quite common for a program to need to create an array of characters; some 
examples will occur later. 
 Illustrations of uses of the delete (and delete []) operators come toward the end 
of the next section after pointer variables have been discussed. 
 
 
20.2 POINTERS 
 
20.2.1 Some "pointer" basics 
 
 
Defining pointer variables 
 
Pointers are a derived data type.  The pointyness, represented by a '*', is a modifier to 
some basic data type (either built in like int or a programmer defined struct or class 
type).  The following are definitions of pointer variables: 
 

int  *ptr1; 
char *ptr2; 
Bitmap *ptr3; 
Aircraft *ptr4; 

 
These definitions make ptr1 a pointer to a data element that is an int; ptr2 is a pointer 
to a character; ptr3 is a pointer to a Bitmap object; and ptr4 is a pointer to an 
Aircraft object.  Each of these pointer variables can be used to hold an address; it has 
to be the address of a data variable of the specified type. 
 Pointers are type checked to the same degree as anything else is in C++.  If you want 
to store a value in ptr1, the value will have to be the address of a variable that is an 
integer. 
 Definitions of pointer variables can cause problems.  Some of the problems are due 
to the free format allowed.  As far as a C++ compiler is concerned, the following are 
identical: 
 

int  *ptr1; 
int* ptr1; 
int    * ptr1; 

 
but strictly the * belongs with the variable name.  It does matter.  Consider the 
following definition: 
 

int* pa, pb; 
 
What are the data types of pa and pb? 
 In this case pa is a pointer to an integer (something that can hold the address of an 
integer variable) while pb is an integer variable.  The * belongs on the variable name; 
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the definition really is int *pa, pb;.  If you wanted to define two pointers you 
would have to write int *pa, *pb;. 
 Although the "pointyness" qualifier * associates with a variable name, we need to 
talk about pointer types independent of any specific instance variable.  Thus, we will be 
referring to int* pointers, char* pointers, and Aircraft* pointers. 
 
 
Pointers and arrays 
 
At the end of the last section, there was an example that involved creating an array of 
characters on the heap.  The address returned by new char[10] has the type "address 
of array of characters".  Now char* is a pointer to a character can therefore hold the 
address of a character.  What would be the correct type declaration for a pointer to an 
array of characters (i.e. something that can hold the address of an array of characters)? 
 For reasons partly explained in 20.5, a pointer to an array of characters is also 
char*.  This makes reading code a bit more difficult.  If you see a variable of pointer 
type being defined you don't know whether it is intended to hold the address of a single 
instance of the specified data type or is meant to be used to refer to the start of an array 
of data elements. 
 
 
"Generic pointers" 
 
Although pointers have types, you quite often need to have functions that use a pointer 
to data of arbitrary type.  A good example is the low-level write() function.  This 
function needs a pointer to the memory area that contains the data to be copied to disk 
and an integer specifying the number of bytes to be copied.  The actual write operation 
involves just copying successive bytes from memory starting at the address specified by 
the pointer; the same code can work for any type of data.  The write() function will 
accept a pointer to anything. 
 Originally in C, a char* was used when the code required a "pointer to anything".  
After all, a "pointer to anything" must hold the address of a byte, a char is a byte, so a 
pointer to anything is a char*.  Of course, this just increases the number of possible 
interpretations of char*.  It may mean a pointer to a character, or it may mean a pointer 
to an array of characters, or it may mean a pointer to unspecified data. 
 These days, the special type void* is generally preferred when a "pointer to 
anything" is needed.  However, a lot of older code, and almost all the older C libraries 
that you may use from C++, will still use char*. 
 
 

void* pointer type 
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Pointer casts 
 
C++ checks types, and tries to eliminate errors that could arise if you assign the wrong 
type of data to a variable.  So, C++ would quite reasonably object to the following: 
 

char *aPtr; 
… 
aPtr = new Point3d; 

 
Here the new operator is returning "address of a Point3d", a char* is something that 
holds an "address of a character".  The type "address of a Point3d" is not the same as 
"address of a character".  So, the assignment should be challenged by the compiler, 
resulting in at least a warning if not an error message. 
 But you might get the same error with the code: 
 

Point3d *bPtr; 
… 
bPtr = new Point3d; 
… 
theOutputFile.write(bPtr, sizeof(Point3d)); 

 
Function write() requires a pointer with the address of the data object, you want it to 
write the contents of the Point3d whose address is held in bPtr.  You would get an 
error (depends on your compiler and version of iostream) if the function prototype was 
something like: 
 

write(char*, int); 
 
The compiler would object that the function wanted a char* and you were giving it a 
Point3d*. 
 In situations like this, you need to tell the compiler that you want it to change the 
interpretation of the pointer type.  Although the bPtr really is a "pointer to a Point3d" 
you want it to be treated as if it were a "pointer to char". 
 You achieve this by using a "type cast": 
 

char *aPtr; 
Point3d *bPtr; 
… 
… 
bPtr = new Point3d; 
… 
theOutputFile.write((char*)bPtr, sizeof(Point3d)); 
 
aPtr = (char*) new Point3d; 
 

 
The construct: 
 

Casting to char* or 
void* 
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(char*)  
 (some address value from a pointer, a function,  
  or an operator) 

 
tells the compiler to treat the address value as being the address of a character.  This 
allows the value to be assigned to a char* variable or passed as the value of a char* 
argument. 
 If a function requires a void* argument, most compilers allow you to use any type 
of pointer as the actual argument.  A compiler allowing this usage is in effect putting a 
(void*) cast into your code for you.  Occasionally, you might be required to put in an 
explicit (void*) cast. 
 Casting from specific pointer types like Aircraft*, Point3d*, or Bitmap* to 
general types like char* and void* is safe.  Casts that convert general pointers back 
to specific pointer types are often necessary, but they do introduce the possibility of 
errors. 
 In Chapter 21, we look at a number of general purpose data structures that can be 
used to hold collections of data objects.  The example collection structures don't store 
copies of the information from the original data objects, instead they hold pointers to 
the data objects.  These "collection classes" are intended to work with any kind of data, 
so they use void* data pointers.  There is a difficulty.  If you ask the object that 
manages the collection to give you back a pointer to one of the stored data objects you 
are given back a void* pointer. 
 Thus you get code like the following: 
 

class Job { 
public: 
 Job(int codenum, Name customer, ....); 
… 
 int JobNumber(void) const; 
… 
}; 
 
class Queue { 
public: 
 … 
 void Append(void* ptr_to_newitem); 
 int Length(void) const; 
 void *First(void); 
 … 
}; 
 
// make a new job and add it to the Queue 
Job* j = new Job(worknum++, cName, ...); 
… 
theQueue.Append(j); 
… 
// Look at next queued job 
 ?? = theQueue.First(); 

 

Casting a void* to a 
specific pointer type 
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The Queue object returns a void* pointer that holds the address of one of the Job 
objects that was created earlier.  But it is a void* pointer.  You can't do anything 
much with a void* . 
 A type cast is necessary: 
 

Job *my_next_task = (Job*) theQueue.First(); 
cout << "Now working on " << my_next_task->JobNumber() << 
endl; 

 
A cast like this is perfectly reasonable and safe provided the program is properly 
designed.  The programmer is telling the compiler, "you think it could be a pointer to 
any kind of data, I know that it is a pointer to a Job object, let me use it as such". 
 These casts only cause problems if there are design flaws.  For example, another 
programmer might incorrectly imagine that the queue held details of customers rather 
than jobs and write code like: 
 

Customer* c; 
// get customer from queue, type cast that void* 
c = (Customer*) theQueue.First(); 

 
The compiler has to accept this.  The compiler can't tell that this programmer is using 
the queue incorrectly.  Of course, the second programmer will soon be in difficulties 
with code that tries to treat a Job object as if it were a Customer object. 
 When you write or work with code that type casts from general (void*) to specific 
(Job* or Customer*) you should always check carefully to verify the assumptions 
being made in relation to the cast. 
 
 
Null pointers and uninitialized pointers 
 
Pointers don't have any meaningful value until you've made them point somewhere!  
You make a pointer variable point somewhere by assigning a value; in C++ this will 
most often be a value returned by the new operator.  There is a constant, NULL, defined 
in several of the header files, that represents the concept of "nowhere".  You can assign 
the constant NULL to a pointer variable of any type: 
 

char *ptr1 = NULL; 
Aircraft *ptrA = NULL; 
… 

 
 Often you will be working with collections of pointers to data items, a pointer whose 
value is NULL is frequently used to mark the last element of the collection.  The loops 
that control working through the collection are set up so that they stop on finding a 
NULL pointer.  These NULL pointers serve much the same role as "sentinel values" used 
in loops that read input (as discussed in Chapter 9). 

NULL 



12 Dynamic data and pointers 

 You can test whether a pointer is NULL using code like: 
 

if(ptrA != NULL) { 
 // Process Aircraft accessed via ptrA 
 …; 
 } 

 
or: 
 

if(ptrA) { 
 // Process Aircraft accessed via ptrA 
 …; 
 } 

 
In effect, NULL equates to 0 or "false".  The second form is extremely common; the first 
version is actually slightly clearer in meaning. 
 Global and filescope pointer variables are initialized to NULL by the linking-loader.  
Automatic pointer variables, those defined as local to functions, are not normally 
initialized.  Their initial contents are arbitrary; they contain whatever bit pattern was in 
memory at the location that corresponds to their place in the function's stack frame. 
 An amazingly large proportion of the errors in C and C++ programs are due to 
programmers using pointers that have never been set to point anywhere.  The arbitrary 
bit pattern in an uninitialized pointer may represent an "illegal address" (e.g. address -5, 
there is no byte whose address is -5).  These illegal addresses are caught by the 
hardware and result in the operating system stopping the program with an error such as 
"segmentation fault", "bus error", "system error 2" etc. 
 Other uninitialized pointers may by chance hold addresses of bytes in one of the 
program's segments.  Use of such an address may result in changes to arbitrary static, 
stack-based, or heap-based variables or even overwriting of code.  Such errors can be 
quite hard to track down because the problems that they cause frequently don't show up 
until long after the time that the uninitialized pointer was used.  Fortunately, modern 
compilers can spot many cases where code appears to be using an uninitialized variable; 
these cases result in warning messages that must be acted on. 
 
 
Input and output of pointers? 
 
No input, and not much output! 
 You can get the value of a pointer printed.  This is sometimes useful for debugging 
purposes (the output format usually defaults to hex: for pointers): 
 

cout << "ptrA now holds address " << hex << ptrA << endl; 
 
In some cases you will need to convert the pointer to a long integer, e.g. long(ptrA). 

Beware of 
uninitialized pointers 
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 There is no purpose in writing the value of a pointer to a disk file (nor of writing out 
a structure that contains pointer data members).  The data written would be useless if 
read back in on a subsequent run of the program. 
 The value in a pointer is going to be an address, usually one chosen by the run-time 
memory manager and returned by the new operator.  If you run the program another 
time, the run-time memory manager might start with a different area of memory to work 
with and almost certainly will allocate data areas differently.  Consequently, data 
objects end up at quite different places in memory on different runs.  Yesterday's 
addresses are no use. 
 
 
20.2.2 Using pointers 
 
Assignment of pointers 
 
Consider the following code fragment: 
 

class Demo { 
public: 
 Demo(int i, char c); 
 … 
private: 
 int fi; 
 char fc; 
}; 
 
Demo::Demo(int i, char c) { fi = i; fc = c; } 
 
int main() 
{ 
 Demo *ptr1 = NULL; 
 Demo *ptr2 = NULL; 
// stage 1 
 ptr1 = new Demo(6, 'a'); 
 ptr2 = new Demo(7, 'b'); 
// stage 2 
 ptr2 = ptr1; 
// stage 3 
 … 
} 

 
The situation in memory after each stage is illustrated in Figure 20.3. 
 At the end of stage 1, the stack frame for main() has been built in the stack and the 
two pointer variables are both NULL; the heap is empty.  In stage 2, the two data 
structures are built in the heap; the addresses returned by new are copied into the 
pointer variables so that these now "point to" their heap structures. 
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Figure 20.3 Pointer assignment. 

 
 In stage 3, the contents of ptr1 (the address of the Demo object with values 6, A) is 
copied into ptr2.  This makes both pointers hold the same address and so makes them 
point to the same object.  (Note that this code would have a memory leak; the second 
Demo object, 7,B, has been abandoned but remains in the heap.) 
 Assignment of pointer variables simply means copying an address value from one to 
another.  The data addressed by the pointers are not affected. 
 
 
Using pointers to access the data members and member functions of structures 
 
If a structure can be accessed by a pointer, its data members can be manipulated.  C and 
C++ have two styles by which data members can be referenced. 
 The more common style uses the -> (data member access) operator: The -> operator 
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struct Thing { 
 int  fNum; 
 double  fD; 
 char  fX; 
}; 
 
int main() 
{ 
 Thing *pThing; 
 pThing = new Thing; 
 pThing->fNum = 17; 
 pThing->fX = '?'; 
 pThing->fD = 0.0; 
 … 
 … 
 if(pThing->fNum < kLIM) 
  …; 
 … 
 xv += pThing->fD; 

 
The -> operator takes the name of a (typed) pointer variable on its left (e.g. pThing, a 
Thing* pointer), and on its right it takes the name of a data member defined as part of 
that type (e.g. fX; the compiler checks that fX is the name of a data member of a 
Thing).  The -> operator produces an address: the address of the specified data 
member of a structure starting at the location held in the pointer.  (So pThing->fNum 
would typically return the address held in pThing, pThing->fD would return an 
address value 4 greater, while pThing ->fX would return an address value 12 
greater than the starting address.) 
 If the expression involving the -> operator is on the left side of an = assignment 
operator (i.e. it is an "lvalue"), the calculated address specifies where something is to be 
stored (e.g. as in pThing->fX = '?', where the address calculated defines where the 
'?' is to be stored).  Otherwise, the address is interpreted as the place from where a data 
value is to be fetched (e.g. as in if(pThing->fNum …) or += pThing->fD;). 
 There is a second less commonly used style.  The same operations could be coded as 
follows: 
 

 (*pThing).fNum = 17; 
 (*pThing).fX = '?'; 
 (*pThing).fD = 0.0; 
 … 
 … 
 if((*pThing).fNum < kLIM) 
  …; 
 … 
 xv += (*pThing).fD; 

 
 This uses * as a "dereferencing" operator.  "Dereferencing" a pointer gives you the 
object pointed to.  (Lots of things in C and C++ get multiple jobs to do; we've seen '&' 
work both as a bit wise "And" operator and as the "address of" operator.  Now its *'s 

(*). operator 
combination 
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turn; it may be an innocent multiply operator, but it can also work as a "dereferencing" 
operator.) 
 Dereferencing a pointer gives you a data object, in this case a Thing object.  A 
Thing object has data members.  So we can use the "." data member selection operator 
to chose a data member.  Hence the expressions like (*pThing).fD. 
 If you have a pointer to an object that is an instance of a class, you can invoke any 
of its member functions as in the example in 20.2.1: 
 

Job *my_next_task; 
… 
cout << "Now working on " << my_next_task->JobNumber() << 
endl; 

 
 
Manipulating complete structures referenced by pointers 
 
Though you usually want to access individual data members (or member functions) of 
an object, you sometimes need to manipulate the object as a whole. 
 You get the object by dereferencing the pointer using the * operator.  Once you 
have the object, you can do things like assignments: 
 

int main() 
{ 
 Demo *ptr1 = NULL; 
 Demo *ptr2 = NULL; 
 ptr1 = new Demo(6, 'a'); 
 ptr2 = new Demo(7, 'b'); 
 
// Change the contents of second Demo object to make it 
// identical to the first 
 *ptr2 = *ptr1; 
 … 
} 

 
The *ptr2 on the left side of the = operator yields an address that defines the target 
area for a copying (assignment) operation.  The *ptr1 on the right hand side of the = 
operator yields an address that is interpreted as the address of the source of the data for 
the copying operation. 
 In the example on class Number, we sometimes needed to initialize a new Number 
(result) to the same value as the current object.  The code given in the last chapter 
used an extra CopyTo() member function.  But this isn't necessary because we can 
code the required operation more simply as follows: 
 

Number Number::Subtract(const Number& other) const 
{ 
 Number result; 
 result = *this; 
  
 if(other.Zero_p()) return result; 

Calling member 
functions 

*this 
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 … 
} 

 
The implicitly declared variable this is a Number*.  It has been initialized to hold the 
address of the object that is executing the Subtract() function.  If we want the object 
itself, we need to dereference this (hence *this).  We can then directly assign its 
value to the other Number result. 
 Alternatively we could have used the copy constructor Number(const Number&).  
This function has to be passed the Number that is to be copied.  So we need to pass 
*this: 
 

Number Number::Subtract(const Number& other) const 
{ 
 Number result(*this); 
  
 if(other.Zero_p()) return result; 
 … 
} 

 
 
Working with a pointer to an array 
 
The following code fragment illustrates how you could work with an array allocated in 
the heap.  The array in this example is an array of characters.  As explained previously, 
the pointer variable that is to hold the address returned by the new [] ("give me an 
array" operator) is just a char*.  But once the array has been created, we can use the 
variable as if it were the name of a character array (i.e. as if it had been defined as 
something like char ptrC[50]). 
 

#include <iostream.h> 
 
int main() 
{ 
 cout << "How big a string do you want? "; 
 int len;  
 cin >> len; 
  
 char *ptrC = new char[len]; 
 for(int i = 0; i < len-1; i++) 
  ptrC[i] = '!'; 
 ptrC[len - 1] = '\0'; 
 cout << "Change some letters:" << endl; 
 for(;;) { 
  int lnum; 
  char ch; 
  cout << "# "; 
  cin >> lnum; 
  if((lnum < 0) || (lnum >= len-1)) break; 
   
  cout << "ch : "; 
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  cin >> ch; 
   
  ptrC[lnum] = ch; 
  } 
   
 cout << "String is now "; 
 cout << ptrC; 
 cout << endl; 
  
 delete [] ptrC; 
 return 0; 
} 

 
Note that the programmer remembered to invoke the delete [] operator to get rid of 
the array when it was no longer required. 
 The code shown makes certain that character change operations are only attempted 
on characters that are in the range 0 … N-2 for a string of length N (the last character 
in position N-1 is reserved for the terminating '\0').  What would happen if the checks 
weren't there and the code tried to change the -1th element, or the 8th element of an 
array 0…7? 
 The program would go right ahead and change these "characters".  But where are 
they in memory? 
 If you look at Figure 20.2, you will see that these "characters" would actually be 
bytes that form the header or trailer housekeeping records of the memory manager.  
These records would be destroyed when the characters were stored. 
 Now it may be a long time before the memory manager gets to check its 
housekeeping records; but when it does things are going to start to fall apart. 
 Bugs related to overwriting the ends of dynamically allocated arrays are very 
difficult to trace.  Quite apart from the delay before any error is detected, there are other 
factors that mean such a the bug will be intermittent! 
 It is rare for programs to have mistakes that result in negative array indices so 
overwriting the header of a block containing an array is not common.  Usually, the 
errors relate to use of one too many data element (and hence overwriting of the trailer 
record).  But often, the trailer record isn't immediately after the end of the array, there is 
a little slop of unused space. 
 The program will have asked for an array of 40 bytes; the memory manager may 
have found a free block with  48 bytes of space (plus header and trailer).  This is close 
enough; there is no need to find something exactly the right size.  So this block gets 
returned and used.  An overrun of one or two bytes won't do any damage. 
 But the next time the program is run, the memory manager may find a free block of 
exactly the right size (40 bytes plus header and trailer).  This time an overrun causes 
problems. 
 Be careful when using dynamically allocated arrays! 
 
 
Deleting unwanted structures 

Awful warning on 
dynamically allocated 

arrays 
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If you have a pointer to a dynamically allocated struct or class instance you don't want, 
simply invoke the delete operator on that pointer: 
 

Aircraft *thePlane; 
… 
if(thePlane->OutOfFuel()) 
 delete thePlane; 

 
The delete operator passes details back to the memory manager which marks the 
space as free, available for reallocation in future. 
 The pointer isn't changed.  It still holds the value of the now non-existent data 
structure.  This is dangerous.  If there is an error in the design of the code, there may be 
a situation where the data object is accessed after it is supposed to have been deleted.  
Such code will usually appear to work.  Although the memory area occupied by the 
data object is now marked as "free" it is unlikely to be reallocated immediately; so it 
will usually contain the data that were last saved there.  But eventually, the bug will 
cause problems. 
 It is therefore wise to change a pointer after the object it points to is deleted: 
 

if(thePlane->OutOfFuel()) { 
 delete thePlane; 
 thePlane = NULL; 
 } 

 
Setting the pointer to NULL is standard.  Some programmers prefer to use an illegal 
address value: 
 

thePlane = (Aircraft*)0xf5f5f5f5 
 
Any attempt to reuse such a pointer will immediately kill the program with an address 
error; such an automatic kill makes it easier to find the erroneous code. 
 The delete [] operator should be used to free an array created using the new [] 
operator. 
 
 
20.2.3 Strings and hash tables revisited 
 
These new pointer types permit slightly better solutions to some of the examples that 
we have looked at previously. 
 
 
Strings 
 

delete operator 

delete [] operator
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Section 11.7 introduced the use of character arrays to hold constant strings and string 
variables.  Things like Message were defined by typedefs: 
 

typedef char Message[50]; 
 
(making Message a synonym for an array of 50 characters) and arrays of Message 
were used to store text: 
 

Message gMessage[] { 
 "Undefined symbol", 
 "Illegal character", 
 … 
 "Does not compute" 
}; 

 
Similar constructs were used for arrays of keywords, or menu options, and similar 
components introduced in Chapter 12 and later chapters. 
 These things work.  But they are both restricting and wasteful.  They are restricting 
in that they impose a maximum length on the keywords or menu messages.  They are 
wasteful in that usually the vast majority of the keywords are very much shorter than 
the specified size, but each occupies the same amount of memory. 
 Sometimes it is helpful to have all data elements the same size.  For example, if we 
want to write some Messages to a binary disk file it is convenient to have them all the 
same size.  This gives structure to the file (we can find a specific entry in the Message 
file) and simplifies input. 
 But if the data are only going to be used in main memory, then there is less 
advantage in having them the same size and the "wasted space" becomes a more 
important issue. 
 The following structure would take up much less overall memory than the 
gMessage[] table defined above: 
 

char *gMsgPtrs[] = { 
 "Undefined symbol", 
 "Illegal character", 
 … 
 "Does not compute" 
}; 

 
 Figure 20.4 illustrates how this gMsgPtrs[] structure might represented in 
memory.  This representation has the overhead of a set of pointers (estimate at 4 bytes 
each) but each individual message string occupies only the amount of space that it 
needs instead of the 50 bytes previously allocated.  Usually, this will result in a 
significant saving in space. 
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Figure 20.4 Representing an array of initialized character pointers. 
 
 The messages referred to by the gMsgPtrs[] array would probably be intended as 
constants.  You could specify this: 
 

const char *gMsgPtrs[] = { 
 "Undefined symbol", 
 "Illegal character", 
 … 
 "Does not compute" 
}; 

 
This makes gMsgPtrs[] an array of pointers to constant character strings.  There will 
be other examples later with definitions of pointers to constant data elements. 
 Many standard functions take pointers to constant data as arguments.  This is very 
similar to const reference arguments.  The function prototype is simply indicating that it 
doesn't change the argument that it can access by the pointer. 
 Fixed size character arrays are wasteful for program messages and prompts, and 
they may also be wasteful for character strings entered as data.  If you had a program 
that had to deal with a large number of names (e.g. the program that sorted the list of 
pupils according to their marks), you could use a struct like the following to hold the 
data: 
 

Pointers to const data
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struct pupil_rec { 
 int fMark; 
 char fName[60]; 
}; 

 
but this has the same problem of wasting space.  Most pupils will have names less than 
sixty characters (and you are bound to get one with more than 60). 
 You would be better off with the following: 
 

struct Pupil_Rec { 
 int fMark; 
 char *fName; 
}; 

 
 The following example code fragment illustrates creation of structs and heap-based 
strings: 
 

Pupil_Rec *GetPupilRec(void) 
{ 
 cout << "Enter mark, or -1 if no more records" << endl; 
 int mark; 
 cin >> mark; 
 if(mark < 0) 
  return NULL; 
 
 Pupil_Rec *result = new Pupil_Rec; 
 result->fMark = mark; 
 cin.ignore(100,'\n'); 
 cout << "Enter names, Family name, then given names"  
   << endl; 
 char buffer[200]; 
 cin.getline(buffer,199,'\n'); 
  
 int namelen = strlen(buffer); 
 result->fName = new char[namelen+1]; 
 
 strcpy(result->fName, buffer); 
 
 return result; 
} 

 
 This function is defined as returning a pointer to a Pupil_Rec; it will have to create 
this Pupil_Rec structure on the heap using the new operator.  If the mark input is 
negative, it means there is no more input; in this case the function returns NULL.  This is 
a very typical style in a program that needs to create a number of data records based on 
input data.  The calling program can have a loop of the form while((rec = 

GetPupilRec()) != NULL) { … }. 
 If the mark is not negative, another Pupil_Rec struct is created using the new 
operator and its fMark field is initialized.  Any trailing input following the mark is 
removed by the call to ignore().  The function then prompts for the pupil's names. 

Return NULL if no 
structure needed 

Create structure if 
necessary 

Read string into 
temporary "buffer" 

Make character array 
of required size and 

link to struct 
Fill in character 

array 
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 There has to be some character array allocated into which the name can be read.  
This is the role of buffer.  It gets filled with a complete line from the input. 
 The number of characters needed for the name is then determined via the call to 
strlen().  A character array is allocated on the heap using new [] (the character 
array is one longer than the name so as to leave room for a terminating '\0' character).  
The name is then copied into this array. 
 The new structure has been built and so it can be returned.  Note how every 
structure is represented by two separate blocks of information in the heap, with the 
character array linked to the main Pupil_Rec struct.  In most of your later programs 
you will have hundreds if not thousands of separate objects each stored in some block 
of bytes on the heap.  Although separately allocated in the heap, these objects are 
generally linked together to represent quite elaborate structural networks. 
 
 
Hash table 
 
Sections 18.2.2 and 18.2.3 contained variations on a simple hash table structure.  One 
version had an array of with fixed 20 character words, the other used an array of structs 
incorporating fixed sized words and an integer count.  These arrays again "wasted" 
space. 
 Ideally, a hash table should be not much more than half occupied; so many, perhaps 
almost half of the table entries will not be used even when all the data have been 
loaded.  Most of the words entered into the hash table would have been less than twelve 
characters so much of the space allocated for each word is wasted (and of course the 
program can't deal with the few words that do exceed twenty characters). 
 A slightly more space-efficient variation would use a table of pointers to character 
arrays (for the version that is to store words) or pointers to structs for the version that 
needs words and associated integer data values).  This arrangement for the table for 
words would be as shown in Figure 20. 5 (compare with version in Figure 18.1).  Note 
that the words represented as separately allocated arrays in the heap do require those 
headers and trailers.  The space costs of these cut into the savings made by only using 
the number of characters required for each word.  The only significant saving is going 
to be that due to the fact that only half the table is populated. 
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Figure 20.5 Hash table using pointers to strings. 
 
 The changes to the code needed to use the modified structure aren't substantial.  The 
following are rewrites of a couple of the functions given in Section 18.2. 
 

const int kTBLSIZE  = 1000; 
 
char *theTable[kTBLSIZE]; 
 
void InitializeHashTable(void) 
{ 
 for(int i=0; i< kTBLSIZE; i++) 
  theTable[i] = NULL; 
} 
 
int NullEntry(int ndx) 
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{ 
 return (theTable[ndx] == NULL); 
} 

 
 Functions InitializeHashTable() and NullEntry() both have minor 
changes to set pointers to NULL and to check for NULL pointers. 
 The code for MatchEntry() is actually unchanged!  There is a subtle difference.  
Previously the argument was an array of characters, now it is a pointer to an array of 
characters.  But because of the general equivalence of arrays and pointers these can be 
dealt with in the exact same manner. 
 

int MatchEntry(int ndx, const char str[]) 
{ 
 return (0 == strcmp(str, theTable[ndx])); 
} 

 
 The InsertAt() function has been changed so that it allocates an array on the 
heap to store the string that has to be inserted.  The string's characters are copied into 
this new array.  Finally, the pointer in the table at the appropriate index value is filled 
with the address of the new array. 
 

void InsertAt(int ndx, const char str[]) 
{ 
 char *ptr; 
 ptr = new char[strlen(str) + 1]; 
 strcpy(ptr,str); 
 theTable[ndx] = ptr; 
} 

 
 
20.3 EXAMPLE: "AIR TRAFFIC CONTROLLER" 
 
Problem 
 
Implement the simulated "Air Traffic Control" (ATC) trainer/game described below.   
 The ATC trainer is to give users some feel for the problems of scheduling and 
routing aircraft that are inbound to an airport.  Aircraft are picked up on radar at a range 
of approximately150 miles (see Figure 20.6).  They are identified by call sign, position, 
velocity, acceleration, and details of the number of minutes of fuel remaining.  An 
aircraft's velocity and acceleration are reported in terms of x', y', z' and x'', y'', z'' 
components.  The user (game-player, trainee air-controller, or whatever) must direct 
aircraft so that they land successfully on the single east-west runway (they must 
approach from the west). 
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Figure 20.6 The "Air Traffic Control" problem. 
 
 There are a number of potential problems that the controller should try to avoid.  If 
an aircraft flies to high, its engines stall and it crashes.  If it flies too low it runs into one 
of the hills in the general vicinity of the airport.  If it runs out of fuel, it crashes.  If its 
(total) horizontal speed is too low, it stalls and crashes.  If the horizontal speed is too 
high, or if it is descending too fast, the wings fall off and, again, it crashes. 
 At each cycle of the simulation, the controller may send new directives to any 
number of inbound aircraft.  Each cycle represents one minute of simulated time.  A 
directive specifies the accelerations (as x'', y'', z'' components) that should apply for a 
specified number of minutes.  Subsequent directives will override earlier settings.  The 
aircraft pilot will check the directive.  If accelerations requested are not achievable, or it 
is apparent that they would lead to excessive velocities within a minute, the directive is 
ignored.  An acceptable directive is acknowledged.   
 At each cycle of the simulation, every aircraft recomputes its position and velocity.  
Normally, one unit of fuel is burnt each minute.  If an aircraft has a positive vertical 
acceleration ("Climb!", "Pull out of that dive!", …) or its horizontal accelerations lead 
to an increase in its overall horizontal speed, it must have been burning extra fuel; in 
such cases, its remaining fuel has to be decremented by one extra unit. 
 Aircraft must be guided so that they line up with the approach path to the runway.  If 
they are flying due east at an appropriate velocity, within certain height limits and with 
some remaining fuel, they may be handed over to the airport's automated landing 
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system.  These aircraft are considered to have been handled successfully, and are 
deleted from the simulation. 
 
 
Details 
 
Controlling aircraft by specifying accelerations is unnatural, but it makes it easy to 
write code that defines how they move.  You need simply remember your high school 
physics equations: 
 

u initial velocity 
v final velocity 
s distance travelled 
α acceleration 
t time 
 
v = u + α * t 
s = u * t + 0.5 * α * t2 
 

When recomputing the position and velocity of an aircraft, the x, y (and x' , y') 
components can be treated separately.  Just calculate the distance travelled along each 
axis and update the coordinates appropriately.  The total ground speed is given by: 
 

speed = •((x')2 + (y')2)  
 
 The following limits can be used for aircraft performance (pure inventions, no 
claims to physical reality): 
 

Maximum height 40000 feet 
Minimum safe height  450 feet 
Maximum horizontal speed   12 miles per minute (mpm) 
Minimum horizontal speed    2 mpm 
Maximum rate of descent  600 feet per minute (fpm) 
Maximum rate of ascent 1000 fpm 
Maximum acceleration/ 
 deceleration (horizontal)    2 miles per minute per 
minute 
Maximum positive vertical  
 acceleration  800 feet per minute per 
minute 
Maximum negative vertical 
 acceleration  400 fpmpm 

 
The maximum rate of ascent is simply a limit value, you cannot go faster even if you 
try, but nothing disastrous happens if you do try to exceed this limit.  The other speed 
limits are critical, if you violate them the aircraft suffers. 

Equations of motion 
for aircraft 

Aircraft limits 
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 For an aircraft to achieve a safe landing, the controller must bring it into the pick up 
area of the automated landing system.  The aircraft must then satisfy the following 
constraints: 
 

Approach height   (600 … 3000) feet 
Distance west of the runway  4 miles … 10 miles 
Distance north/south of runway < 0.5 miles 
Fuel remaining   > 4 minutes 
x'     +2 … +3 mpm 
  (i.e. flying east 120-180mph) 
y'     -0.1…+0.1 mpm  
  (minimal transverse speed) 
z'     -500 … 0 fpm  
  (descending, but not too fast) 
x'', y'', z''    •0 (no accelerations) 

 
 A relatively crude status display, and command line interface for user input will 
suffice.  For example, a status report listing details of all aircraft in the controlled space 
could be something like: 
 

BA009  (…,…,…) (…,…,…) (…,…,…) fuel = … 
JL040  (…,…,…) (…,…,…) (…,…,…) fuel = … 

 
Each line identifies an aircraft's call sign; the first triple gives its x, y, z position 
(horizontal distances in miles from the airport, height in feet); the second triple gives 
the x', y', z' velocities (miles per minute, feet per minute); the third triple is the 
accelerations x'', y'', z'' (miles per minute per minute, feet per minute per minute); 
finally the number minutes of fuel remaining is given.  For example: 
 

BA009  (-128,4.5,17000) (4,-0.5,-1000) (0,0,0) fuel = 61 
 
This aircraft is flying at 17000 feet.  Currently it is 128 miles west of the airport and 4.5 
miles north of the runway.  Its total ground speed is approximately 4.03 miles per 
minute (241mph).  It is descending at 1000 feet per minute.  It is not accelerating in any 
way, and it has 61 minutes of fuel remaining. 
 The user has to enter commands that tell specific aircraft to accelerate (decelerate).  
These commands will have to include the aircraft's call sign, and details of the new 
accelerations.  For example: 
 

BA009  0 0 100 3 
 
This command instructs plane BA009 to continue with no horizontal accelerations (so 
no change to horizontal velocities), but with a small positive vertical acceleration that is 
to apply for next three minutes (unless changed before then in a subsequent command).  
This will cause the aircraft to reduce its rate of descent. 
 Entry of planes into controlled air-space can be handled by a function that uses 
arrays of static data.  One array of integers can hold the arrival times (given in minutes 

Landing conditions 

Reports and 
command interface 

Adding aircraft to the
controlled airspace 
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from the start of simulation), another array of simple structs can hold details of flight 
names and the initial positions and velocities of the aircraft.  If this function is called 
once on each cycle of the simulation, it can return details of any new aircraft (assume at 
most one aircraft arrives per minute). 
 
 
Design 
 
To start, what are the objects needed in this program? 
 Aircraft are obvious candidates.  The program is all about aircraft moving around, 
responding to commands that change their accelerations, crashing into hills, and diving 
so fast that their wings fall off.  Each aircraft owns some data such as its call sign, its 
current x, y, z position, its x', y', z' velocities.  Each aircraft provides all services related 
to its data.  For example, there has to be a way of determining when an aircraft can be 
handed over to the automated landing system.  The controller shouldn't ask an aircraft 
for details of its position and check these, then ask for velocities and check these.  
Instead the controller should simply ask the aircraft "Are you ready to auto land?"; the 
aircraft can check all the constraints for itself. 
 So we can expect class Aircraft.  Class Aircraft will own a group of data members 
and provide functions like "Update accelerations, change to these new values" and 
"Check whether ready to auto-land", "Fly for another minute and work out position". 
 A class representing the "air traffic controller" is not quite so obvious.  For a start, 
there will only ever be one instance of this class around.  It gets created at the start of 
the game and is used until the game ends. 
 When you've programmed many applications like this you find that usually it is 
helpful to have an object that owns most of the other program elements and provides 
the primary control functions. 
 In this example, the aircontroller will own the aircraft and will provide a main "run" 
function.  It is in this "run" function that we simulate the passage of time.  The "run" 
function will have a loop, each cycle of which represents one minute of elapsed time.  
The run-loop will organize things like letting each aircraft update its position, 
prompting the user to enter commands, updating some global timer, and checking for 
new aircraft arriving. 
 The main program can be simplified.  It will create an "AirController" and tell it to 
"run". 
 The process of completing the design will be iterative.  Each class will get 
considered and its details will be elaborated.  The focus of attention may then switch to 
some other class, or maybe to a global function (a function that doesn't belong to any 
individual class).  When other details have been resolved, a partial design for a class 
may get reassessed and then expanded with more detail. 
 
class Aircontroller 
 

The objects and their
classes 

class Aircraft 

class Aircontroller?
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What does an Aircontroller own? 
 It is going to have to have some data members that represent the controlled airspace.  
These would probably include a count of the number of aircraft in the controlled space, 
and in some way will have to include the aircraft themselves.  The aircraft are going to 
be class instances created in the heap, accessed by Aircraft* pointers.  The Aircontroller 
object can have an array of pointers. 
 What does an Aircontroller do? 
 It gets created by the main program and then runs.  So it will need a constructor that 
initializes its records to show that the airspace is empty, and a "run" function that 
controls the simulation loop. 
 The main loop is going to involve the following steps: 
 

Update a global timer 
Let all planes move 
Report current status, getting each plane to list its 
details 
Get all planes to check whether they've crashed or can 
 auto-land, remove those no longer present in the 
airspace 
if can handle more planes (arrays not full) 
 check if any arrived 
if airspace is not empty 
 give user the chance to enter commands 
 check for quit command 

 
Naturally, most of these steps are going to be handled by auxiliary private member 
functions of the Aircontroller class. 
 The timer will be a global integer variable.  It is going to get used by the function 
that adds aircraft to the airspace.  (In this program, the timer could be a local variable of 
the "run" function and get passed as an argument in the call to the function that adds 
aircraft.  However, most simulations require some form of global variable that 
represents the current time; so we follow the more general style.) 
 The array of pointers to aircraft will start with all the pointers NULL.  When an 
aircraft is added, a NULL pointer is changed to hold the address of the new aircraft.  
When an aircraft crashes or lands, it gets deleted and the pointer with its address is reset 
to NULL.  At any particular moment in the simulation, the non-NULL entries will be 
scattered through the array.  When aircraft need to be activated, a loop like the 
following can be used: 
 

for i = 0; i < max; i++ 
 if aircraft[i] != NULL 
  aircraft[i] do something 

 
Similar loop constructs will be needed in several of the auxiliary private member 
functions of class Aircontroller. 
 For example, the function that lets all the planes move is going to be: 
 

Data owned 

Services provided 
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move planes 
for i = 0; i < max; i++ 
 if aircraft[i] != NULL 
  aircraft[i] move 

 
while that which checks for transfers to the auto lander would be: 
 

check landings 
for i = 0; i < max; i++ 
 if aircraft[i] != NULL 
  if aircraft[i] can transfer 
   report handoff to auto lander 
   delete the aircraft 
   aircraft[i] = NULL; 
   reduce count of aircraft in controlled space 

 
 Another major role for the Aircontroller object will be to get commands from the 
user.  The user may not want to enter any commands, or may wish to get one plane to 
change its accelerations, or may need to change several (or might even wish to quit 
from the game).  It would be easiest to have a loop that kept prompting the user until 
some "ok no more commands" indicator was received.  The following outline gives an 
idea for the structure: 
 

Get user commands 
 prompt for command entry 
 loop 
  read word 
  if( word is "Quit")  
   arrange to terminate program 
  if( word is "OK") 
   return 
   
  read accelerations and time 
 
  if(any i/o problems) warn, and just ignore data 
  else handle command  

 
 Handling commands will involve first finding the aircraft with the call sign entered, 
then telling it of its new accelerations: 
 
 Handle command 
  identify target aircraft (one with call sign entered) 
  if target not found 
   warn of invalid call sign 
  else tell target to adjust accelerations 
 
The target can be found in another function that loops asking each aircraft in turn 
whether it has the call sign entered. 
 

Getting user 
commands 
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class Aircraft 
 
What does an individual aircraft own? 
 There is a whole group of related data elements – the call sign, the coordinates, 
velocities.  When an aircraft is created, these are to be filled in with predefined data 
from a static array that specifies the planes.  It would actually be convenient to define 
an extra struct whose role is just to group most or all of these data elements.  The 
predefined data used to feed aircraft into the airspace could be represented as an array 
of these structs. 
 So, we could have: 
 

struct PlaneData { 
 double  x, y, z; // coords 
 double  vx, vy, vz; // velocities 
 … 
 short  fuel;  // minutes remaining 
 char  name[7]; // 6 character call name 
}; 

 
An Aircraft object would have a PlaneData as a data member, and maybe some 
others. 
 Aircraft are going to be created; when created they will be given information to fill 
in their PlaneData data member.  They will get told to move, to print their details for 
reports, to change their accelerations, to check whether they can land, and to check 
whether they are about to suffer misfortune like flying into the ground.  There were 
quite a number of "terminating conditions" listed in the problem description; each could 
be checked by a separate private member function. 
 Some of the member functions will be simple: 
 

toofast 
 return true if speed exceeds safe maximum 
 
tooslow 
 return true if speed exceeds safe minimum 

 
The overall horizontal speed would have to be a data member, or an extra auxiliary 
private member function should be added to calculate the speed. 
 The function that checks for transfer to auto lander will also be fairly simple: 
 

making final approach 
 if(not in range 4…10 miles west of runway) 
  return false 
 if(too far north or south) 
  return false 
 if( speed out of range) 
  return false 
 … 

Data owned 

What do Aircraft do? 
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 return true 
 
 The "move" and "update" functions are more complex.  The update function has to 
check that the new accelerations are reasonable: 
 

update 
 check time value (no negatives!) 
 
 check each acceleration value against limits 
  if any out of range ignore command 
 
 calculate velocity components after one minute 
  of new acceleration 
 
 if any out range ignore command 
 
 acknowledge acceptable command 
  
 change data members 

 
The move function has to recompute the x, y, z coordinates and the velocities.  If the 
specified number of minutes associated with the last accelerations has elapsed, these 
need to be zeroed.  The fuel left has to be reduced by an appropriate amount. 
 

move  
  
 calculate distance travelled 
  assuming constant velocity 
 
 if(command time >0)  
  /* Still accelerating */ 
  work out new velocities, 
   (note: limit +ve vertical velocity) 
  correct distances to allow for accelerations 
   
  allow for extra fuel burn if accelerating    
  decrement command time 
   and if now zero clear those 
   accelerations    
 
 fix up coordinates 
 allow for normal fuel usage 

 
Aircraft generating function 
 
This would use a global array with "arrival times" of aircraft, another global array with 
aircraft details, and an integer counter identifying the number of array entries already 
used.  A sketch for the code is: 
 

new arrivals function 
 if time < next arrival time 
  return null 
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 create new aircraft initializing it with data  
  from PlaneData array 
 
 update count of array entries processed 
  
 return aircraft 

 
 
Refining the initial designs 
 
The initial designs would then be refined.  For the most part, this would involve further 
expansion of the member functions and the identification of additional auxiliary private 
member functions.  The process used to refine the individual functions would be the 
same as that illustrated in the examples in Part III. 
 The design process lead to the following class definitions and function 
specifications: 
 

struct PlaneData { 
 double x,y,z; 
 double vx,vy,vz; 
 double ax,ay,az; 
 short fuel; 
 char name[7]; 
}; 
 
class Aircraft { 
public: 
 Aircraft(const PlaneData& d); 
 void   PrintOn(ostream& os) const; 
 void  Update(double a1,  
    double a2, double a3, short timer); 
 void  Move(); 
 Boolean  MakingApproach() const; 
 Boolean  Terminated() const; 
 Boolean  CheckName(const char str[]) const; 
 const char* ID() const; 
private: 
 Boolean Stalled() const; 
 Boolean Pancaked() const; 
 Boolean NoFuel() const; 
 Boolean TooFast() const; 
 Boolean TooSlow() const; 
 Boolean CrashDiving() const; 
 double  Speed() const; 
 
 PlaneData fData;  // main data 
 short  fTime;  // time remaining for command 
}; 

 
(The implementation uses a typedef to define "Boolean" as a synonym for unsigned 
char and defines false and true.)  The member functions would be further documented: 
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Aircraft(const PlaneData& d); 
Initialize new Aircraft from PlaneData 
 

void  PrintOn(ostream& os) const; 
Output details as needed in report 
 

void Update(double a1,  
   double a2, double a3, short timer); 

Verify acceleration arguments, update data members if appropriate, 
acknowledge. 
 

void Move(); 
Recompute position and velocity. 
 

Boolean MakingApproach() const; 
Check whether satisfies landing conditions. 
 

Boolean Terminated() const; 
Check if violates any flight constraints. 
 

Boolean CheckName(const char str[]) const; 
Check str argument against name 
 

const char* ID() const; 
Return name string (for reports like "XXX has landed/crashed") 
 

Boolean Stalled() const; 
Check if flown too high. 
 

Boolean Pancaked() const; 
Check if flown too low. 
 

Boolean NoFuel() const; 
Check fuel. 
 

Boolean TooFast() const; 
Check if flown too fast. 
 

Boolean TooSlow() const; 
Check if flown too slow. 
 

Boolean CrashDiving() const; 
Check if exceeding descent rate. 
 

double Speed() const; 
Check ground speed 
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 The AirControlller class is: 
 

class AirController { 
public: 
 AirController(); 
 void  Run(); 
private: 
 void  Report(); 
 void  MovePlanes(); 
 void  AddPlanes(); 
 void  Validate(); 
 void  CheckCrashes(); 
 void  CheckLandings(); 
  
 Boolean GetCommands(); 
 void  HandleCommands(const char name[], 
    double,double,double,short); 
 Aircraft *IdentifyByCall(const char name[]); 
  
 Aircraft *fAircraft[kMAXPLANES]; 
 int   fControlling; 
}; 

 
The member functions are: 
 

AirController(); 
Constructor, initialize air space to empty. 
 

void Run(); 
Run main loop moving aircraft, checking commands etc 
 

void Report(); 
Get reports from each aircraft. 
 

void MovePlanes(); 
Tell each aircraft in turn to move to new position. 
 

void AddPlanes(); 
Call the plane generating function, if get plane returned add it to array 
and notify player of arrival. 
 

void Validate(); 
Arrange checks for landings and crashes. 
 

void CheckCrashes(); 
Get each plane in turn to check if any constraints violated. 
 

void CheckLandings(); 
Get each plane in turn to check if it can autoland, sign off those 
 that can autoland. 
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Boolean GetCommands(); 

Get user commands, returns true if "Quit" 
 

void HandleCommands(const char name[], 
    double,double,double,short); 

Pass a "change accelerations" command on to correct aircraft. 
 

Aircraft *IdentifyByCall(const char name[]); 
Identify aircraft from call sign. 
 

(Really, the program should check for aircraft collisions as well as landings and crash 
conditions.  Checking for collisions is either too hard or too boring.  The right way to 
do it is to calculate the trajectories (paths) flown by each plane in the past minute and 
determine if any trajectories intersect.  This involves far too much mathematics.  The 
boring way of doing the check is to model not minutes of elapsed times but seconds.  
Each plane moves for one second, then distances between each pair of planes is 
checked.  This is easy, but clumsy and slow.) 
 
 
Implementation 
 
The following are an illustrative sample of the functions.  The others are either similar, 
or trivial, or easy to code from outlines given earlier. 
 The main() function is concise: 
 

int main() 
{ 
 AirController me; 
 me.Run(); 
 return 0; 
} 

 
This is actually a fairly typical main() for an object-based program – create the 
principal object and tell it to run. 
 The file with the application code will have the necessary #includes and then start 
with definition of constants representing limits: 
 

// Constants that define Performance Limits  
const double kMaxHeight     = 
40000.0; 
const double kMinHeight     = 450.0; 
  
… 
const double kMaxVDownAcceleration   = -400.0; 
 
// Constants that define conditions for landing 
const double kminh    =  600.0; 
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const double kmaxh    = 3000.0; 
  
const double  kinnerrange   = -4.0; 
… 
const short  kminfuel   = 4; 

 
 There are a couple of globals, the timer and a counter that is needed by the function 
that adds planes: 
 

static long PTimer = 0; 
static short PNum = 0; 

 
 The arrays with arrival times and prototype aircraft details would have to be defined: 
 

short PArrivals[] = { 
 5, 19,  31, 45, 49,  
 … 
}; 
  
PlaneData ExamplePlanes[] = { 
 { -149.0,   12.0,  25000.0,   
  7.0,  0.0, -400.0,  
   0.0, 0.0,  0.0,  
    120,  "BA009" }, 
 { -144.0,   40.0,  25000.0,  
   4.8, -1.4,    0.0,  
   0.0, 0.0,  0.0,  
    127,  "QF040" }, 
 … 
 
 }; 
 
static short NumExamples = sizeof(ExamplePlanes) /  
      sizeof(PlaneData); 
 

 
 When appropriate, function NewArrival() creates an Aircraft on the heap 
using the new operator; a PlaneData struct is passed to the constructor.  The new 
Aircraft is returned as a result.  The value NULL is returned if it was not time for a 
new Aircraft. 
 

Aircraft *NewArrival(void) 
{ 
  
 if(PNum==NumExamples) return NULL; 
  
 if(PTimer < PArrivals[PNum]) return NULL; 
 Aircraft *newPlane = new Aircraft(ExamplePlanes[PNum]); 
 PNum++; 
 return newPlane; 
} 
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 The constructor for controller simply sets all elements of the array fAircraft to 
NULL and zeros the fControlling counter.  The main Run() function is: 
 

void AirController::Run() 
{ 
 for(Boolean done = false; !done;) { 
  PTimer++; 
  MovePlanes(); 
  Report(); 
  Validate(); 
  if(fControlling < kMAXPLANES) 
   AddPlanes(); 
  if(fControlling>0) 
   done = GetCommands(); 
  } 
} 

 
 The Report() and MovePlanes() functions are similar; their loops involve 
telling each aircraft to execute a member function (PrintOn() and Move() 
respectively).  Note the way that the member function is invoked using the -> operator 
(fAircraft[i] is a pointer to an Aircraft). 
 

void AirController::Report() 
{ 
 if(fControlling < 1) cout << "Airspace is empty\n"; 
 else  
 for(int i=0;i<kMAXPLANES; i++)  
  if(fAircraft[i]!= NULL)  
   fAircraft[i]->PrintOn(cout); 
} 

 
 The AddPlanes() function starts with a call to the plane generator function 
NewArrival(); if the result from NewArrival() is NULL, there is no new Aircraft 
and AddPlanes() can exit. 
 

void AirController::AddPlanes() 
{ 
 Aircraft* aPlane = NewArrival(); 
 if(aPlane == NULL) 
  return; 
   
 cout << "New Aircraft:\n\t";  
 fControlling++; 
 aPlane->PrintOn(cout); 
 for(int i=0;i<kMAXPLANES; i++)  
  if(fAircraft[i] == NULL) { 
   fAircraft[i] = aPlane; 
   aPlane = NULL; 
   break; 
   } 
 if(aPlane != NULL) { 
  cout << "??? Planes array full, program bug??"  
   << endl; 
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  delete aPlane; 
  } 
} 

 
In other cases, the count of aircraft in the controlled space is increased, and an empty 
slot found in the fAircraft array of pointers.  The empty slot is filled with the address 
of the newly created aircraft. 
 The CheckCrashes() and CheckLanding() functions called from 
Validate() are similar in structure.  They both have loops that check each aircraft 
and dispose of those no longer required: 
 

void AirController::CheckCrashes() 
{ 
 for(int i=0;i<kMAXPLANES; i++)  
  if((fAircraft[i] != NULL) && 
   (fAircraft[i]->Terminated())) { 
    cout << fAircraft[i]->ID(); 
    cout << " CRASHED!" << endl; 
    delete fAircraft[i]; 
    fAircraft[i] = NULL; 
    fControlling--; 
    } 
   
} 

 
 Input to GetCommands() will start with a string; this should be either of the key 
words OK or Quit or the name of a flight.  A buffer of generous size is allocated to 
store this string temporarily while it is processed. 
 The function checks for, and acts on the two key word commands.  If the input 
string doesn't match either of these it is assumed to be the name of a flight and the 
function therefore tries to read three doubles (the new accelerations) and an integer (the 
time).  Checks on input errors are limited but they are sufficient for this kind of simple 
interactive program.  If data are read successfully, they are passed to the 
HandleCommand() function. 
 

Boolean AirController::GetCommands() 
{ 
 char buff[120]; 
 cout << "Enter Flight Commands:\n"; cout.flush(); 
  
 for(;;) { 
  cin >> buff; 
  if(0 == ::strcmp(buff,"Quit"))return true; 
  if(0 == ::strcmp(buff,"OK")) { 
   cin.ignore(SHRT_MAX,'\n'); 
   return false; 
   } 
  double a1,a2,a3; 
  short t; 
  cin >> a1 >> a2 >> a3 >> t; 
  if(cin.fail()) { 
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   cout << "Bad input data\n"; 
   cin.clear(); 
   cin.ignore(SHRT_MAX,'\n'); 
   } 
  else HandleCommands(buff,a1,a2,a3,t); 
  } 
   
} 

 
 The HandleCommands() function uses the auxiliary function 
IdentifyByCall() to find the target.  If target gets set to NULL it means that flight 
identifier code was incorrectly entered.  If the target is found, it is asked to update its 
accelerations: 
 

void AirController::HandleCommands(const char* call, double 
a1, double a2, double a3, short n) 
{ 
 Aircraft* target = IdentifyByCall(call); 
   
 if(target == NULL) { 
  cout << "There is no aircraft with " << call  
   << " as call sign.\n"; 
  return; 
  } 
   
 target->Update(a1,a2,a3,n); 
} 

 
 Function IdentifyByCall() loops through the collection of aircraft asking each 
in turn whether its call sign matches the string entered by the user.  The function returns 
a pointer to an Aircraft with a matching call sign, or NULL if none match. 
 

Aircraft *AirController::IdentifyByCall(const char name[]) 
{ 
 for(int i=0; i < kMAXPLANES; i++) 
  if((fAircraft[i] != NULL) && 
   (fAircraft[i]->CheckName(name)))  
    return fAircraft[i]; 
 return NULL; 
} 

 
 The constructor for Aircraft initializes its main data from the PlaneData struct 
passed as an argument and zeros the command timer.  The PrintOn() function simply 
outputs the data members: 
 

Aircraft::Aircraft(const PlaneData& d) 
{ 
 fData = d; 
 fTime = 0; 
} 
 
void Aircraft::PrintOn(ostream& os) const 
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{ 
 os.setf(ios::fixed,ios::floatfield); 
 os.precision(2); 
 os << fData.name; 
 
 os << "\t(" << fData.x << "," << fData.y << ","  
  << fData.z << ")\t("; 
 … 
 os << endl; 
} 

 
 An aircraft's name is needed at a couple of points in the code of AirController.  
The ID() function returns the name as a char* ("pointer to array of characters"). 
 Now the address returned is that of the fData.name data member.  If you return 
the address of a data member, the "wall around the data" can be breached.  The data 
values can be changed directly instead of through member functions.  Any pointers to 
data members that are returned should be specified as "pointers to constant data".  So 
here the return type is const char* (i.e. a pointer to an array of characters that 
shouldn't be changed). 
 

const char* Aircraft::ID() const 
{ 
 return fData.name; 
} 

 
 Function Move() sorts out the changes to position, velocity, and fuel: 
 

void Aircraft::Move() 
{ 
 double dx, dy, dz; 
 dx = fData.vx; 
 dy = fData.vy; 
 dz = fData.vz;  
  
 double oldspeed = Speed(); 
  
 if(fTime>0) { 
  /* Still accelerating */ 
  fData.vx += fData.ax; dx += fData.ax * 0.5; 
  fData.vy += fData.ay; dy += fData.ay * 0.5; 
  fData.vz += fData.az; dz += fData.az * 0.5; 
   
  if((fData.az>0) || (Speed() > oldspeed)) 
   fData.fuel--; 
   
  if(fData.vz>kMaxAscentRate) { 
   fData.vz = kMaxAscentRate; 
   fData.az = 0.0; 
   } 
    
  fTime--; 
  if(fTime==0)  
   fData.az = fData.ay = fData.ax = 0.0; 

Returning const 
something* 
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  } 
 fData.x += dx; 
 fData.y += dy; 
 fData.z += dz; 
 fData.fuel--; 
} 

 
 The Update() function performs a series of checks on the new acceleration values.  
If all checks are passed, the values in the data members are changed and an 
acknowledgment is printed: 
 

void Aircraft::Update(double a1, double a2, 
  double a3, short timer) 
{ 
 /* validate input */ 
 if(timer < 1) return; 
 
/* accelerations, x and y limited by Horizontal 
acceleration */ 
 if(fabs(a1) > kMaxHAcceleration) return;   
 if(fabs(a2) > kMaxHAcceleration) return; 
  
 /* Vertical bracketed in range. */ 
 if(a3 > kMaxVUpAcceleration) return;  
 if(a3 < kMaxVDownAcceleration) return;  
 
 /* check that new velocities not excessive */ 
 double newvertvelocity = fData.vz + a3; 
 if(newvertvelocity > kMaxAscentRate) return; 
 if(newvertvelocity < kMaxDescentRate) return; 
  
 double newvx, newvy, newtotal; 
 newvx = fData.vx + a1; 
 newvy = fData.vy + a2; 
 newtotal = sqrt(newvx*newvx + newvy*newvy); 
 if(newtotal > kMaxSpeed) return; 
 if(newtotal < kMinSpeed) return; 
 
  cout  << fData.name << ": Roger\n"; 
 fData.ax = a1; 
 fData.ay = a2; 
 fData.az = a3; 
 fTime = timer; 
} 

 
 Function MakingApproach() involves a series of checks against the constraints 
that define the "auto landing" conditions: 
 

Boolean Aircraft::MakingApproach() const 
{ 
 /*   in pick up range of auto lander? */ 
  
 if((fData.x < kouterrange) ||  
   (fData.x > kinnerrange)) return false; 
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 /*  Aligned with runway? */ 
 if(fabs(fData.y) > koffline) return false; 
  
 /* In height bracket? */ 
 if((fData.z < kminh) ||  
   (fData.z > kmaxh)) return false; 
    
 /* In velocity bracket? */ 
 if((fData.vx < kxprimelow) ||  
   (fData.vx > kxprimehigh)) return false; 
    
 … 
 
 /* and no real accelerations? */ 
 if(fabs(fData.ax) > kxalphalimit) return false; 
 … 
  
 /* and sufficient fuel? */ 
 if(fData.fuel < kminfuel) return false; 
  
 return true; 
} 

 
 Function Terminated() uses the various auxiliary member functions to check for 
terminating conditions: 
 

Boolean Aircraft::Terminated() const 
{ 
 return 
  Stalled() || Pancaked() || NoFuel() || 
   TooFast() || TooSlow() || CrashDiving(); 
} 

 
 The remaining functions of class Aircraft are all simple; representative examples 
are: 
 

Boolean Aircraft::CheckName(const char str[]) const 
{ 
 return (0 == strcmp(fData.name, str)); 
} 
 
Boolean Aircraft::Stalled() const 
{ 
 return fData.z > kMaxHeight; 
} 
 
double Aircraft::Speed() const 
{ 
 return sqrt(fData.vx*fData.vx + fData.vy*fData.vy); 
} 
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 The program runs OK but as a game it is a little slow (and directing an aircraft to 
land safely is surprisingly hard).  The following is a fragment from a recording of the 
game: 
 

Airspace is empty 
New Aircraft: 
BA009  (-149,12,25000) (7,0,-400)  (0,0,0) fuel: 120 
Enter Flight Commands: 
BA009 is west of the runway, a little to the north and 
coming in much too fast; slow it down, make it edge south a 
bit 
BA009 -1 -0.2 0 3 
BA009: Roger 
OK 
BA009  (-142.5,11.9,24600) (6,-0.2,-400)  (-1,-0.2,0)  
fuel: 119 
… 
BA009   (-124.5,9.9,23000)      (4,-0.6,-400)   (0,0,0) 
fuel: 115 
Enter Flight Commands: 
Slow up a little more, increase rate of descent 
BA009 -0.5 0 -100 2 
BA009: Roger 
OK 
BA009 (-120.75,9.3,22550 (3.5,-0.6,-500) (-0.5,0,-100) 
fuel: 114 
… 
BA009  (-15.5,0,3350) (3,-0,-500)  (0,0,0) fuel: 78 
QF040  (-52.77,0.18,11600) (3.01,-0.05,-600) (0,0,0) fuel: 
100 
NZ164  (-71,-45.95,20500) (1,5.3,-500)  (0,0,0) fuel: 70 
CO1102 (116,-87,32500) (-5,1,-500) (0,0,0) fuel: 73 
Enter Flight Commands: 
BA009 0 0 150 1 
BA009: Roger 
OK 
BA009 (-12.5,0,2925) (3,-0,-350) (0,0,0) fuel: 76 
QF040 (-49.76,0.13,11000) (3.01,-0.05,-600)  (0,0,0) fuel: 
99 
NZ164   (-70,-40.65,20000) (1,5.3,-500) (0,0,0) fuel: 69 
CO1102  (111,-86,32000) (-5,1,-500)  (0,0,0) fuel: 72 
Enter Flight Commands: 
OK 
BA009  (-9.5,0,2575) (3,-0,-350) (0,0,0) fuel: 75 
QF040  (-46.75,0.08,10400) (3.01,-0.05,-600) (0,0,0) fuel: 
98 
NZ164   (-69,-35.35,19500) (1,5.3,-500) (0,0,0) fuel: 68 
CO1102  (106,-85,31500) (-5,1,-500) (0,0,0) fuel: 71 
BA009 transferred to airport traffic control, bye! 
One landed safely, QF040 on course as well 
Enter Flight Commands: 
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The primary reason for having pointers is to hold addresses of data objects that have 
been dynamically allocated in the heap, i.e. for values returned by the new operator. 
 You need pointers to heap based structures when representing simple data objects 
with variable lifetimes like the Aircraft of the last example.  You also need pointers 
when building up complex data structures that represent networks of different kinds.  
Networks are used for all sorts of purposes; they can represent electrical circuits, road 
maps, the structure of a program, kinship relations in families, the structure of a 
molecule, and thousands of other things.  Networks are built up at run-time by using 
pointers to thread together different dynamically created component parts. 
 Why would you want pointers to data in the static data segment or to automatics on 
the stack?  After all, if such variables are "in scope" you can use them directly, you 
don't have to work through pointer intermediaries.  You should NEVER incorporate the 
address of an automatic (stack based) data item in an elaborate network structure.  It is 
rare to want to incorporate the address of a static data item.   
 Really, you shouldn't be writing code that needs addresses of things other than heap-
based objects.  Usually you just want the address of an entire heap based object (the 
value returned by new), though sometimes you may need the address of a specific data 
member within a heap based object. 
 But C and C++ have the & "address of" operator.  This allows you to get the address 
of any data element.  Once an address has been obtained it can be used as the value to 
be stored in a pointer of the appropriate type.  If you look at almost any C program, and 
most C++ programs, you will see & being used all over the place to get addresses of 
automatics and statics.  These addresses are assigned to pointers.  Pointers are passed as 
arguments.  Functions with pointer arguments have code that has numerous expression 
using pointer dereferencing (*ptr).  Why are all these addresses needed? 
 
 
Reference arguments and pointer arguments for functions 
 
For the most part, the addresses are needed because the C language does not support 
pass by reference.  In C, arguments for functions are passed by value.  So, simple 
variables and struct instances are copied onto the stack (ignore arrays for now, they are 
discussed in the next section).  The called function works with a copy of the original 
data.  There are sound reasons for designing a language that way.  If you are trying to 
model the mathematical concept of a function, it is something that simply computes a 
value.  An idealized, mathematical style function should not have side effects; it 
shouldn't go changing the values of its arguments. 
 Function arguments that are "passed by reference" have already been used for a 
number of reasons.  Thus, in the example in section 12.8.3, there was a function that 
had to return a set of values (actually, an int and a double) rather than a single value.  
Since a function can only return a single value, it was necessary to have reference 
arguments.  The example function had an integer reference and a double reference as 
arguments; these allowed the function to change the values of the caller's variables. 

No "pass by 
reference" in C 

Uses of "pass by 
reference" 
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 Other examples have used pass by reference for structures.  In the case of const 
reference arguments, this was done to avoid unnecessary copying of the struct that 
would occur if it were passed by value.  In other cases, the structs are passed by 
reference to allow the called function to modify the caller's data. 
 As previously explained, a compiler generates different code for value and reference 
arguments.  When a function needs a value argument, the compiler generates code that, 
at the point of call, copies the value onto the stack; within the function, the code using 
the "value" variable will have addresses that identify it by its position in the current 
stack frame.  Reference arguments are treated differently.  At the point of call their 
addresses are loaded onto the stack.  Within the function, the address of a reference 
argument is taken from the stack and loaded into an address register.  When the code 
needs to access the actual data variable, it uses indirect addressing via this address 
register; which is the same way that code uses pointers. 
 Consider the Exchange() function in the following little program: 
 

void Exchange(double& data1, double& data2) 
{ 
 double temp; 
 temp = data1; 
 data1 = data2; 
 data2 = temp; 
} 
 
int main() 
{ 
 cout << "Enter two numbers : "; 
 double a, b; 
 cin >> a >> b; 
 if(b < a) 
  Exchange(a, b); 
 cout << "In ascending order: " << a << ", " << b << 
endl; 
 return 0; 
} 

 
Function Exchange() swaps the values in the two variables it is given as arguments; 
since they are reference variables, the function changes data in the calling environment.  
The code generated for this program passes the addresses of variables a and b.  The 
value in a gets copied into temp, replaced by the value in b, then the value of temp is 
stored in b.  These data movements are achieved using indirect addressing through 
address registers loaded with the address of a and b. 
 Pass by reference really involves working with addresses and pointers.  But the 
compiler takes care of the details.  The compiler arranges to get the addresses of the 
arguments at the point of call.  The compiler generates code that uses indirection, 
pointer style, for the body of the function. 
 Programs need the "pass by reference" mechanism.  The C language didn't have it.  
But C allowed programmers to hand code the mechanism everywhere it was needed. 

Implementation of 
pass by value and 
pass by reference

Compiler uses 
addresses and 

pointers for pass by 
reference

Programmer uses 
addresses and 

pointers
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 C has pass by value.  An address is a value and can be passed as an argument if the 
function specifies that it wants a pointer as an argument.  It is easy to use the & 
operator to get an address, so at the point of call the addresses can be determined and 
their values put onto the stack. 
 The code of the function has to use pointers.  So, for example, a function that needs 
to change a double argument will need a double* pointer (i.e. its argument list will 
have to include something like double *dptr).  When the code of the function needs 
the value of that double, it will have to access it indirectly via the pointer, i.e. it will 
have to use the value *dptr. 
 Using explicit pointers and address, the previous program becomes: 
 

void Exchange(double *dptr1, double *dptr2) 
{ 
 double temp; 
 temp = *dptr1; 
 *dptr1 = *dptr2;  
 *dptr2 = temp; 
} 
 
int main() 
{ 
 cout << "Enter two numbers : "; 
 double a, b; 
 cin >> a >> b; 
 if(b < a) 
  Exchange(&a, &b); 
 cout << "In ascending order: " << a << ", " << b << 
endl; 
 return 0; 
} 

 
The function prototype specified pointer arguments, Exchange(double *dptr1, 
double *dptr2).  The call, Exchange(&a, &b), has the appropriate "address of 
operations" getting the addresses of the actual arguments a and b. 
 The statement: 
 

temp = *dptr1; 
 
gets the double value accessed indirectly via dptr1 and saves it in the double temp.  
The statement 
 

 *dptr1 = *dptr2;  
 
gets the value accessed indirectly via dptr2 and uses it to overwrite the double in the 
memory location referenced via dptr1.  The final statement changes the value in the 
location reference by dptr2 to be the value stored temporarily in temp. 

Faking pass by 
reference using 

explicit addresses and 
pointers 
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 High level source code using explicit pointers and addresses corresponds almost 
directly to the actual machine instruction sequences generated by the compiler.  
Identical instruction sequences are generated for the high level code that uses 
references; it is just that the code with references leaves the mechanism implicit.  There 
are programmers who prefer the pointer style, arguing that "it is better to see what is 
really going on".  (Of course, if you follow such arguments to their logical conclusion, 
all programs should be written in assembly language because in assembler you can see 
the instructions and really truly know what is going on.) 
 There are a few situations where the pointer style is more natural.  The low level 
read() and write() functions are good examples.  These need to be given the 
address of a block of bytes; the code of the function uses a byte pointer to access the 
first byte, then the second, and so on as each byte gets transferred to/from file. 
 In most other cases, reference style is easier to read.  The reference style leaves the 
mechanisms implicit, allowing the reader to focus on the data transformations being 
performed.  The use of explicit pointers, and the continual pointer dereferencing that 
this necessitates, makes it harder to read the code of functions written using the pointer 
style. 
 While you can adopt the style you prefer for the functions that you write for 
yourself, you are often constrained to using a particular style.  All the old C libraries 
still used from C++ will use pointers and will need to be passed addresses.  Because of 
the C heritage, many C++ programmers write code with pointer arguments; 
consequently, many of the newer C++ libraries use pointers and pointer dereferencing. 
 
 
Getting the addresses of program elements 
 
You can get the address of any program element.  You automatically get the address of 
any data object you create in the heap (the return value from new  is the address); in 
most other cases you need to use the & operator.  The following contrived code 
fragment illustrates how addresses of a variety of different data elements can be 
obtained and used in calls to write().  The prototype for function write() specifies 
either a char* or a void* (depending on the particular version of the iostream library 
used in your IDE); so at the point of call, a value representing an address has to be 
specified. 
 

struct demo { int f1; double f2; }; 
 
// Some data in the static data segment 
long array[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; 
demo d1 = { 1, 2.2}; 
demo d2 = { 2, 4.4}; 
 
void WriteJunk(ofstream& out) 
{ 
 double auto1 = 3.142; 
 demo *demoptrA = new demo; 

Explicit pointers and
addresses represent 
the underlying 
mechanism 

Pointer style or 
reference style?
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 demoptrA->f1 = -7; demoptrA->f2 = 6.8; 
 demo *demoptrB = new demo; 
 demoptrB->f1 = 11; demoptrB->f2 = 81.8; 
 … 
 // The version of iostream and the compiler on your IDE 
 // may require an explicit (char*) cast in all these 
calls 
 // e.g. the first might have to be  
 // out.write((char*) &auto1, sizeof(double)); 
 out.write(&auto1, sizeof(double)); 
 out.write(&(array[4]), sizeof(long)); 
 out.write(&d1, sizeof(demo)); 
 out.write(&(d2.f1), sizeof(int)); 
 out.write(demoptrA, sizeof(demo)); // No & needed! 
 out.write(&(demoptrB->f2), sizeof(double)); 
} 

 
As shown in this fragment, you can get the addresses of: 
 

• local, automatic (stack-based) variables (&auto1); 

• specifically chosen array elements (automatic or global/filescope) (&(array[4])); 

• global/filescope variables (&d1); 

• a chosen data member of an auto or static struct (&(d2.f1)). 

• a chosen data member of a struct accessed by a pointer (&(demoptrB->f2)). 
 
The call 
 

 out.write(demoptrA, sizeof(demo));  
 
doesn't need an & "get address of"; the pointer demoptrA contains the address needed, 
so it is the value from demoptrA has to be passed as the argument. 
 There are two kinds of program element whose address you can get by just using 
their names.  These are functions and arrays.  You shouldn't use the & address of 
operator with these. 
 The use of function addresses, held in variables of type "pointer to function", is 
beyond the scope of this book.  You will learn about these later. 
 As explained more in the next section, C (and hence C++) regards an array name as 
having an address value; in effect, an array name is a pointer to the start of the array.  
So, if you needed to pass an array to the write() function, your code would be: 
 

long Array2[] = { 100, -100, 200, 300, 567 }; 
… 
out.write(Array2, sizeof(Array2)); 

 
 
Pointers as results from functions 

Addresses of 
functions and arrays
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A function that has a pointer return type will return an address value.  This address 
value will get used after exit from the function.  The address is going to be that of some 
data element; this data element had better still be in existence when the address gets 
used! 
 This should be obvious.  Surprisingly often, beginners write functions that return 
addresses of things that will disappear at the time the functions exits.  A simple 
example is: 
 

char *GetName() 
{ 
 char buff[100]; 
 cout << "Enter name"; 
 cin.getline(buff, 99, '\n'); 
 return buff; 
} 

 
This doesn't work.  The array buff is an automatic, it occupies space on the stack while 
the function GetName() is running but ceases to exist when the function returns. 
 The compiler will let such code through, but it causes problems at run time.  Later 
attempts to use the pointer will result in access to something on the stack, but that 
something won't be the character buffer. 
 A function should only return the address of an object that outlives it; which means 
an object created in the heap.  The following code will work: 
 

char *GetName() 
{ 
 char buff[100]; 
 cout << "Enter name"; 
 cin.getline(buff, 99, '\n'); 
 char *ptr = new char[strlen(buff) + 1]; 
 strcpy(ptr, buff); 
 return ptr 
} 

 
 
20.5 POINTERS AND ARRAYS 
 
When arrays were introduced in Chapter 11, it was noted that C's model for an array is 
relatively weak.  This model, which of course is shared by C++, really regards an array 
as little more than a contiguous block of memory. 
 The instruction sequences generated for code that uses an array have the following 
typical form: 
 

load address register with the address of the start of the 
array 
calculate offset for required element 
add offset to address register 

buggy code!
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load data value using indirect address via address register 
 
which is somewhat similar to the code for using a pointer to get at a simple data 
element 
 

load address register from pointer variable 
load data value using indirect address via address register 

 
and really very similar to code using a pointer to access a data member of a struct: 
 

load address register with the address of the start of the 
struct 
calculate offset for required data member 
add offset to address register 
load data value using indirect addressing via address 
register 

 
If you think about things largely in terms of the instruction sequences generated, you 
will tend to regard arrays as similar to pointer based structs.  Hence you get the idea of 
the name of the array being a pointer to the start of that array. 
 Once you start thinking mainly about instructions sequences, you do tend to focus 
on different issues.  For example, suppose that you have an array of characters that you 
need to process in a loop, you know that if you use the following high level code: 
 

char msg[50]; 
… 
for(int i=0; i < len; i++) { 
 … 
 … = msg[i]; 
 … 
 } 

 
then the instruction sequence for accessing the ith character will be something like 
 

load an address register with the address of msg[0] 
add contents of integer register that holds i to address 
register 
load character indirectly using address in address register 

 
which is a little involved.  (Particularly as on the very first machine used to implement 
C, a PDP-7, there was only one register so doing subscripting involved a lot of 
shuffling of data between the CPU and memory.) 
 Still thinking about instructions, you would know that the following would be a 
more efficient way of representing the entire loop construct: 
 

 load address register with address of msg[0] 
 load integer register with 0 
loop 
 compare contents of integer register and value len 
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 jump if greater to end_loop 
 … 
 load character indirectly using address in address 
register 
 add 1 to address register // ready for next time 
 … 

 
This instruction sequence, which implements a pointer based style for accessing the 
array elements, is more "efficient".  This approach needs at most two instructions to get 
a character from the array where the other scheme required at least three instructions.  
(On many machines, the two operations "load character indirectly using address in 
address register" and "add 1 to address register" can be combined into a single 
instruction.) 
 C was meant to compile to efficient instruction sequences.  So language constructs 
were adapted to make it possible to write C source code that would be easy to compile 
into the more efficient instruction sequence: 
 

char msg[50]; 
char *mptr; 
… 
mptr = msg; 
for(int i=0; i < len; i++) { 
 … 
 … = *mptr; 
 mptr++; 
 … 
 } 

 
This initializes a pointer with the address of the first array element: 
 

mptr = msg; 
 
(which could also be written as mptr = &(msg[0])).  When the character is needed, 
pointer dereferencing is used: 
 

 … = *mptr; 
 
Finally, "pointer arithmetic" is performed so as to make the pointer hold the address of 
the next character from the array. 
 C (and C++) have to allow arithmetic operations to be done on pointers.  Once 
you've allowed operations like ++, you might as well allow other addition and 
subtraction operations (I don't think anyone has ever found much application for pointer 
multiplication or division).  For example, if you didn't have the strlen() function, 
you could use the following: 
 

int StrLen(char *mptr) 
{ 
 char *tmp; 
 tmp = mptr; 

Pointer arithmetic
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 while( *tmp) tmp++; 
 return tmp - mptr; 
} 

 
This function would be called with a character array as an argument (e.g. 
StrLen("Hello");).  The while loop moves the pointer tmp through the array until 
it is pointing to a null character.  The final statement: 
 

 return tmp - mptr; 
 
subtracts the address of the start of the array from the address where the '\0' character is 
located. 
 Arithmetic operations on pointers became a core part of the language.  Many of the 
C libraries, still used from C++, are written in the expectation that you will be 
performing pointer arithmetic.  For example, the string library contains many functions 
in addition to strlen(), strcmp(), and strcpy(); one of the other functions is 
strchr(): 
 

char *strchr(const char *s, int c) 
 
this finds the first occurrence of a character c in a string s.  It returns a pointer to the 
position where the character occurs (or NULL if it isn't there).  Usually, you would want 
to know which array element of the character array contained the character, but instead 
of an integer index you get a pointer.  Of course, you can use pointer arithmetic to get 
the index: 
 

char word[] = "Hello"; 
char *ptr = strchr(word, 'e'); 
int pos = ptr - word; 
cout << "e occurred at position " << pos << endl; 

 
 Obviously, character arrays can not be a special case.  What works for characters 
has to work for other data types.  This requirement has ramifications.  If ++ changes a 
char* pointer so that it refers to the next element of a character array, what should ++ 
do for an array of doubles? 
 The following program fragment illustrates the working of ++ with different data 
types (all pointer values are printed as long integers using decimal output to make 
things clearer): 
 

struct zdemo { int f1; char f2; double f3 ;}; 
 
int main() 
{ 
 char cArray[10]; 
 short sArray[10]; 
 long lArray[10]; 
 double dArray[10]; 
 zdemo zArray[10]; 
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 char *cptr = cArray; 
 short *sptr = sArray; 
 long *lptr = lArray; 
 double *dptr = dArray; 
 zdemo *zptr = zArray; 
  
 for(int i=0; i < 5; i++) { 
  cout << long(cptr) << ", " << long(sptr) << ", "  
   << long(lptr) << ", " << long(dptr) << ", " <<  
     long(zptr) << endl; 
  cptr++; sptr++, lptr++, dptr++, zptr++; 
 } 
 cout << cptr - cArray << ", "; 
 cout << sptr - sArray << ", "; 
 cout << lptr - lArray << ", "; 
 cout << dptr - dArray << ", "; 
 cout << zptr - zArray << endl; 
 
 return 0; 
} 
 
22465448, 22465460, 22465480, 22465520, 22465600 
22465449, 22465462, 22465484, 22465528, 22465616 
22465450, 22465464, 22465488, 22465536, 22465632 
22465451, 22465466, 22465492, 22465544, 22465648 
22465452, 22465468, 22465496, 22465552, 22465664 
5, 5, 5, 5, 5 

 
The arithmetic operations take account of the size of the data type to which the pointer 
refers.  Increment a char* changes it by 1 (a char occupies one byte), incrementing a 
double* changes it by 8 (on the machine used, a double needs 8 bytes).  Similarly the 
value zptr (22465680) - zArray (22465600) is 5 not 80, because this 
operation on zdemo pointers involves things whose unit size is 16 bytes not one byte. 
 A lot of C code uses pointer style for all operations on arrays.  While there can be 
advantages in special cases like working through the successive characters in a string, 
in most cases there isn't much benefit.  Generally, the pointer style leads to code that is 
much less easy to read (try writing a matrix multiply function that avoids the use of the 
[] operator). 
 Although "pointer style" with pointer dereferencing and pointer arithmetic is a well 
established style for C programs, it is not a style that you should adopt.  You have 
arrays because you want to capture the concept of an indexable collection of data 
elements.  You lost the benefit of this "indexable collection" abstraction as soon as you 
start writing code that works with pointers and pointer arithmetic. 
 
 
20.6 BUILDING NETWORKS 
 

Output
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The Air Traffic Controller program represented an extreme case with respect to 
dynamically created objects – its Aircraft were all completely independent, they 
didn't relate in a specific ways. 
 There are other programs where the structures created in the heap are components of 
a larger construct.  Once created, the individual separate structures are linked together 
using pointers.  This usage is probably the more typical.  Real examples appear in the 
next chapter with standard data structures like "lists" and "trees". 
 In future years, you may get to build full scale "Macintosh" or "Windows" 
applications.  In these you will have networks of collaborating objects with an 
"application" object linked (through pointers) to "document" objects; the documents 
will have links to "views" (which will have links back to their associated documents), 
and other links to "windows" that are used to frame the views. 
 The data manipulated by such programs are also likely to be represented as a 
network of components joined via pointers.  For example, a word processor program 
will have a data object that has a list of paragraphs, tables, and pictures.  Each 
paragraph will have links to things such as structures that represent fonts, as well as to 
lists of sentences. 
 Each of the components in one of these complex structures will be an instance of 
some struct type or a class.  These various structs and classes will have data members 
that are of pointer types.  The overall structure is built up by placing addresses in the 
pointer data members. 
 Figure 20.7 illustrates stages in building up a simple kind of list or queue.  The 
overall structure is intended to keep a collection of structures representing individual 
data items.  These structures would be called "list cells" or "list nodes".  They would be 
instances of a struct or class with a form something like the following: 
 

struct list_cell { 
 data_type1 data_member_1; 
 data_type2 data_member_2; 
 …; 
 list_cell *fNext; 
}; 

 
Most of the data members would be application specific and are not of interest here.  
But one data member would be a pointer; its type would be "pointer to list cell".  It is 
these pointer data members, the fNext in the example, that are used to link the parts 
together to form the overall structure. 
 A program using a list will need a pointer to the place where it starts.  This will also 
be a pointer to list_cell  It would be a static data segment variable (global or 
filescope) or might be a data member of yet another more complex structure.  For the 
example in Figure 20.7, it is assumed that this "head pointer" is a global: 
 

list_cell *Head; 
 

Pointer data member
for link 

Head pointer 
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 Initially, there would be no list_cells and the head pointer would be NULL 
(stage 1 in Figure 20.7).  User input would somehow cause the program to create a new 
list_cell: 
 

list_cell *MakeCell() 
{ 
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Figure 20.7 Building a "list structure" by threading together "list nodes" in the heap. 
 

 list_cell *res = new list_cell; 
 cout << "Enter data for …"; 
 …; 
 list_cell->data_member_1 = something; 
 … 
 list_cell->fNext = NULL; 
} 
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The MakeCell() function would obviously fill in all the various specialized data 
members; the only general one is the link data member fNext which has to be 
initialized to NULL. 
 The function that created the new list_cell would add it to the overall structure: 
 

… 
list_cell *newdata = MakeCell(); 
if(Head == NULL) 
 Head = newdata; 
else …; 
… 

 
As this would be the first list_cell, the Head pointer is changed to point to it.  This 
results in the situation shown as stage 2, in Figure 20.7. 
 When, subsequently, other list_cells get created, the situation is slightly 
different.  The Head pointer already points to a list_cell.  Any new list_cell 
has to be attached at the end of the chain of existing list_cell(s) whose start is 
identified by the Head pointer. 
 The correct place to attach the new list_cell will be found using a loop like the 
following: 
 

list_cell *ptr = Head; 
while(ptr->fNext != NULL) 
 ptr = ptr->fNext; 

 
The list_cell* variable ptr starts pointing to the first list_cell.  The while loop 
moves it from list_cell to list_cell until a list_cell with a NULL fNext 
link is found.  Such a list_cell represents the end of the current list and is the place 
where the next list_cell should be attached.  The new list_cell is attached by 
changing the fNext link of that end list_cell: 
 

ptr->fNext = newdata; 
 
 Stages 3 and 4 shown in Figure 20.7 illustrate the overall structure after the addition 
of the second and third list_cells. 
 A lot of the code that you will be writing over the next few years will involve 
building up networks, and chasing along chains of pointers.  Two of the examples in 
the next chapter look at standard cases of simple pointer based composite structures.  
The first of these is a simple List class that represents a slight generalization of the 
idea of the list as just presented.  The other example illustrates a "binary search tree".  
The code for these examples provides a more detailed view of how such structures are 
manipulated. 
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